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	Scientific software is developed in a unique environment
	• Rapid prototyping often entails evolving requirements and design issues
	• Existing (legacy) software is enhanced for current use
	• Complex numerical models are difficult to verify and validate
	• Users are very knowledgeable about use of the code
	• Code may be one of many in a chain of models used for analysis
	• Code is perceived as a research tool, not a formal product

	There are many aspects of validation and verification in scientific software
	Verification: Is the model right?
	Validation: Is it the right model?
	real life
	conceptual model
	numerical model
	computational model
	code
	Testing verifies correctness of code and computational model
	The purposes of testing are
	• to establish a level of confidence
	• to quantify relative improvements in successive versions
	• to have a test methodology for regression testing

	which are accomplished by
	• testing correctness of the code
	• testing code against model design
	• assessing reliability

	Testing provides immediate, tangible benefits
	• Indicates areas for performance improvements
	• Provides updates for users’ manuals
	• Positions software for accreditation
	• Captures knowledge of domain experts
	• Provides baseline for porting to other environments and platforms

	Testing provides programmatic benefits
	• Provides focus for application of code
	• Provides focus for future development efforts
	• Test efforts are readily promotable to any level of formality of process
	• Test efforts are readily scalable if warranted

	Testing is characterizing the behavior of the code
	• Testing is not debugging
	• Test for success, and test for failure
	• Conduct conscious testing

	How do I go about testing existing software?
	I. Build a foundation for testing scientific software.
	• Establish and use configuration management
	• Establish and use programming guidelines
	• Establish a process to integrate code changes
	• Develop a long-range, comprehensive test plan

	(consider interdependencies of codes and data models)
	Apply analogous test concepts and techniques to other components in the system
	• Constituent models: Consider input and output requirements, and compatibility of assumptions ac...
	• Pre- and post-processors: Verify correctness of these
	• Data models: Consider the interdependence of software and data

	Summary
	• Testing is characterizing the behavior of the code
	• Conduct conscious testing
	• Test efforts have immediate, tangible benefits
	• Test efforts are promotable and scalable to any level of V&V requirements
	• Two excellent references on testing software:

	(There may be other equally good references; here are two I’ve used.)
	Software Testing Techniques, Boris Beizer, Paperback, 2nd edition (1990). The Coriolis Group; ISB...
	The Art of Software Testing, Glenford Myers, Hardcover, (1979). John Wiley & Sons; ISBN: 04710432...
	II. Develop and implement test plan.
	• Identify stakeholders and responsibilities.
	• Obtain requirements and design specifications.
	• Identify items to be tested.
	• Identify features to be tested and not to be tested.
	• Identify test environment(s).
	• Establish test entry criteria.
	• Establish pass/fail criteria.
	• Have test cases reviewed and approved.
	• Identify test deliverables.
	• Establish schedule, identify risks and contingencies.

	III. Develop appropriate test cases.
	• Establishing confidence in the use of the code requires a judicious combination of approaches
	• Many methods support verifying correctness of implementation against design

	static test code review
	dynamic test regression test
	unit, component tests test tools
	integration/system test coverage analysis
	structural test functional test
	• Test cases may come from problem domain

	comparisons against known analytic solution, arena tests, other simulation software; sensitivity ...
	• Test cases may focus on numerical analysis and uncertainty quantification

	Oberkampf and DeLand, “A New Methodology for the Estimation of Total Uncertainty in Computational...
	Knupp and Salari, “Code Verification via the Method of Manufactured Solutions,” Draft
	• Ensure coverage of requirements and design

	Balance costs with acceptable level of confidence

